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SELF-ORGANIZED AND UNSUPERVISED INFORMATION 

INTEGRATION METHOD BY COMBINING CAPACITY AND PCA 

 
Abstract. The Choquet capacity and integral is a widely accepted model to 

aggregate the multiple dimensional information mainly for its preeminent ability to 

flexibly represent and efficiently deal with the interaction phenomenon among the 

multiple correlative criteria/items. The PCA (Principal Component Analysis) is a 

popular approach to obtain the successive importance of multiple criteria as well 

as the correlations among them from the inter-correlated multiple dimensional 

data. In this paper, we combine some unsupervised capacity identification methods 

and PCA to constitute a self-organized information aggregation scheme, in which 

the PCA is used to generate the partial or comprehensive importance and 

correlations of the reduced (if necessary) multiple criteria, then adopting these 

preference information as the input, the capacity identification methods transform 

them into the competent capacities according to some rules and principles, and the 

final comprehensive integrated information is carried out by the Choquet integral 

accordingly. The main characteristic of this scheme is it only takes the raw 

unscaled data on the multiple criteria as the input and many meaningful 

aggregation analysis and decision aid results can be automatically output without 

the analyst or decision maker’s supervision. The feasibility and practicability of the 

proposed models are demonstrated by using the QS World University Rankings 

data. 

Keywords: Capacity, PCA, MCCPI, Information Aggregation, self-

organized. 
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1. Introduction 

The Choquet capacity [4], also called fuzzy measure [1, 15], or nonadditive 

measure [18], extends the probability measure by replacing the additivity with 

respect to disjoint subsets by the monotonicity with respect to set inclusion, whose 

explicit expression is the nonadditivity with respect to disjoint subsets. With the 

monotonicity or nonadditivity property, the capacity becomes an excellent tool to 

flexibly describe a variety of interaction situations of multiple dimensions, e.g., the 

multiple decision criteria or evaluation items [19, 20]. The Choquet integral [4] 

w.r.t. capacity has many good aggregation characteristics and is the most common 

type of fuzzy or nonlinear integral to aggregate the correlated partial evaluation or 

performance information on the reciprocally interacting criteria/items [9]. 

One of the major tasks of the Choquet capacity and integral information 

integration scheme is to identify the competent capacity for representing the given 

implicit or explicit preference information. The main capacity identification 

methods can be classified into two categories. 

The first category of capacity identification methods aim to fit the learning 

set, which consist of a number of history aggregation instance’s partial evaluations 

as well as their overall evaluation or ranking orders, usually regarded as implicit 

preference information [23]. Their general idea is to find out the most suitable 

capacity that leads to the least divergence between the obtained overall evaluations 

and the desired ones given in the learn set by using some linear or nonlinear 

optimization models [7]. For example, the least-squares principle [7], the least 

absolute deviation criterion [3] and the maximum log-likelihood principle [5] try to 

fit the desired overall evaluations of given instances; meanwhile the maximum split 

approaches [14] try to fit the desired ranking order of given instances. This 

category can be regarded as the typical supervised machine learning method [7]. 

In addition, some other supervising preference information about the 

importance or interaction of the criteria/items can be further added into the capacity 

identification models, like one criterion is more important than another one and 

interaction of some criteria combination is strongly positive/negative [1]. This type 

of information is usually called the explicit preference information [22], which can 

be represented by the comparison and interval range forms of certain equivalent 

representation, i.e., a linear one-to-one mapping in general, such as the Möbius 

representation, Shapley simultaneous interaction index[6], nonadditivity index [18, 

20] and nonmodularity index [19]. 

The second category of capacity identification method only use the explicit 

preference information to constitute the compatible constraints [21, 24] as well as 

the objective function of the optimization model and without resorting to the 

learning set. These methods mainly consist of the maximum entropy principle 

method [12], the compromise principle method [23] and the MCCPI (multiple 

criteria correlation preference information) based minimum deviation method [22]. 

The maximum entropy principle, or equally the principle of minimum distance 
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with symmetric additive capacity [1], pursues the capacity with the maximum 

entropy as the most desired one, which basically tries at most to ensure each 

criterion/item plays the same effect on the overall evaluations. By contrast, the 

compromise principle method manages to ensure the chance parity of all the 

instances or candidates to obtain their maximum evaluations [23]. The MCCPI 

method aims to find out the optimal capacities that have the minimum deviation 

with the initial pairwise preference information. 

Only with the input preference information of the multiple items and 

partial evaluations of the instances, the second category of identification methods 

can automatically generate the most satisfied capacity and then by using the 

Choquet integral the final aggregation information or overall evaluation can be 

obtained in sequence. More specially, the maximum entropy principle method only 

needs the comparison and interval range forms of the preference information; 

beside this type of information, the compromise method also needs the partial 

evaluations of all instances; the MCCPI method needs a special pairwise 

comparison of all criteria/items by the aid of a specific two dimensional diagram or 

scale table. Traditionally, these input information is provided by the decision 

maker or data analyst which is just kind of his/her subjective judgment on the 

importance and interaction of these evaluation criteria/items. 

However, in some situation especially for facing the rather new and very 

complex problem, the decision maker or analyst can not provide high quality or 

reliable input preference information since the lack of background knowledge or 

the complexity and uncertainty inherent in the information aggregation problem. 

Hence, the self-organized and unsupervised method to automatically integrate the 

correlated information becomes very useful, at least it can provide certain aid 

analyses on the matter or give some decision supports about the issue. 

Fortunately, the PCA (principal component analysis) method is a wide 

used tool to represent the inter correlated data into new orthogonal variables with 

successively maximize variance [17], which is generally accepted as a good tool to 

reduce dimensionality [10] and some useful information of the importance and 

correlation of the initial items can be derived accordingly. And by adopting some 

suitable transformation rules, these importance and correlation information 

generated by PCA can be smoothly transformed into the required input preference 

information for the second category capacity identification methods. In this paper, 

we combine the PCA with the maximum entropy method, the compromise 

principle method, the MCCPI method and a further proposed new type of capacity 

identification method, to totally construct four types of self-organized and 

unsupervised multiple dimensions information aggregation approaches. 

This paper is organized as follows. After the introduction, we present some 

knowledge about the capacity, Shapley simultaneous interaction index and the 

Choquet integral in Section 2. In Sections 3 and 4, we briefly introduce the relative 

capacity identification methods and PCA, respectively. Section 5 is devoted to 
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combination schemes and rules of the PCA and capacity identification methods, a 

new identification model is proposed as well. We demonstrate the steps and 

applicability of the proposed unsupervised information aggregation method by 

using the QS World University Rankings data 2019 edition and some empirical 

comparison analyses are also given. Finally, we conclude the paper in Section 6. 

 

2. Preliminaries 

 

Let 𝑁 = {1,2,… , 𝑛}, 𝑛 > 2, be the set of criteria/items, 𝒫(𝑁) be the power 

set of 𝑁, and |𝑆| be the cardinality of subset 𝑆 ⊆ 𝑁.  

 

Definition 1 [1, 4] A capacity on 𝑁 is a set function 𝜇: 𝒫(𝑁) → [0,1]  with 

(i) 𝜇(∅) = 0, 𝜇(𝑁) = 1; (ii) ∀𝐴, 𝐵 ⊆ 𝑁, 𝐴 ⊆ 𝐵 implies 𝜇(𝐴) ≤ 𝜇(𝐵).  
The quantity of 𝜇(𝐴) represents the importance of this criteria coalition to 

information aggregation problem. The monotonicity w.r.t. inclusion subsets also 

enables the capacity transcend the probability measure whose main characteristic is 

the additivity w.r.t. disjoint subsets to flexible represent the interaction or 

dependency among multiple correlated criteria or items [1]. The interaction kind 

and density is usually explicitly represented by certain interaction index, e.g., the 

Shapley simultaneous interaction index given below. 

 

Definition 2  [8] Let 𝜇 be a capacity on 𝑁, the Shapley importance and 

interaction index of 𝜇 is defined as, for any A⊆N, 

 𝐼𝜇(𝐴) = ∑𝐵⊆𝑁\𝐴
1

(|𝑁|−|𝐴|+1)
(
|𝑁| − |𝐴|
|𝐵|

)
−1

(∑𝐶⊆𝐴 (−1)
|𝐴\𝐶|𝜇(𝐶 ∪ 𝐵)). 

Generally speaking, 𝐼𝜇(𝑖) is regarded as the overall importance of criterion 

𝑖 ∈ 𝑁, and 𝐼𝜇(𝐴), |𝐴| ≤ 2, the comprehensive simultaneous interaction of subset 𝐴. 

For the singletons and 2-order subsets, we have [6, 8] 
∑𝑖∈𝑁 𝐼𝜇({𝑖}) = 1, 𝐼𝜇({𝑖}) ≥ 0,  and 𝐼𝜇({𝑖, 𝑗}) ∈ [−1,1], 𝑖, 𝑗 ∈ 𝑁. 

Remark 1. Actually, there are many other interaction indices, like 
nonadditivity index [18], nonmodularity index [19] and bipartition interaction 
indices [20]. Different types of indices have some different properties and practical 
meanings for the aggregation process. For simplication, we only introduce the 
Shapley interaction index.  

The Choquet integral is a widely accepted form of fuzzy integral to 

flexibly aggregate the partial evaluation information of instances or candidates on 

multiple interdependent criteria/items. 

Definition 3  [16] Let 𝑥 be a real-valued function on 𝑁, 𝑥:= (𝑥1, … , 𝑥𝑛) ∈
(−∞,∞)𝑛, the Choquet integral of 𝑥 with respect to a capacity 𝜇 on 𝑁 is defined 

as  
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𝐶𝜇(𝑥) =∑

𝑛

𝑖=1

[𝑥(𝑖) − 𝑥(𝑖−1)]𝜇(𝑁(𝑖)) =∑

𝑛

𝑖=1

[𝜇(𝑁(𝑖)) − 𝜇(𝑁(𝑖+1))]𝑥(𝑖) 

where the parentheses used for indices represent a permutation on 𝑁 such that 

𝑥(1) ≤ ⋯ ≤ 𝑥(𝑛), 𝑥(0) = 0, 𝑁(𝑖) = {(𝑖), … , (𝑛)}, and 𝑁(𝑛+1) = ∅.  

3. The explicit preference information based capacity identification   

     methods 

The most common type of the explicit preference information is the 

comparison and range interval forms of the importance and interaction of 

criteria/items [1, 7], like the overall importance of criterion 𝑖 is at least as great as 

that of criterion 𝑗: 𝐼𝜇({𝑖}) − 𝐼𝜇({𝑗}) ≤ 0; the sign of comprehensive interaction of 

two criteria {𝑖, 𝑗} is positive or negative: 𝐼𝜇({𝑖, 𝑗}) ∈ [𝛿, 1]or𝐼𝜇({𝑖, 𝑗}) ∈ [−1,−δ],    

δ>0; the comprehensive interaction of criteria subset 𝐴 is larger than that of 𝐵 

with threshold 𝛿 > 0: 𝐼𝜇(𝐴) − 𝐼𝜇(𝐵) ≥ 𝛿. Usually the preference information are 

linear constraints, if they are compatible reciprocally, a feasible range can be 

constituted. Otherwise, some inconsistency recognition and adjustment methods 

can be adopted to change them into the consistent case, see [21]. 

3.1.  The maximum entropy principle method 

The entropy of a capacity 𝜇 on 𝑁 is defined by [13]  

𝐸(𝜇) = ∑𝑛𝑖=1 ∑𝐴⊆𝑁\{𝑖}
(|𝑁|−|𝐴|−1)!|𝐴|!

|𝑁|!
ℎ(𝜇(𝐴 ∪ {𝑖}) − 𝜇(𝐴)),                 (1)  

 where ℎ(𝑥) = −𝑥𝑙𝑛𝑥  if 𝑥 > 0  and 0 if 𝑥 = 0 . Since the symmetric additive 

capacity has the largest entropy value ln(𝑛) [2, 23], we can alternatively calculate 

the minimum distance with the symmetric additive capacity to realize the 

maximum entropy principle, e.g., minimum variance principle [12]. If adopt the 

absolute distance, we can get the following multiple goal linear programming 

(MGLP) :  
min𝑧 = ∑𝐴⊂𝑁 𝑑𝐴

+ + 𝑑𝐴
−

𝑠. 𝑡. (

The boundary and monotonicity condition of capacity,
The explicit preference information,

𝜇(𝐴) − 𝑑𝐴
+ + 𝑑𝐴

− = |𝐴|/|𝑁|, 𝑑𝐴
+, 𝑑𝐴

− 0, ∀𝐴 ⊂ 𝑁,

             (2)  

where 𝑑𝐴
+, 𝑑𝐴

− are the positive and negative deviation variables holding the relation 

𝑑𝐴
+ × 𝑑𝐴

− = 0 . Since the objective is minimum, the nonlinear constraints 𝑑𝐴
+ ×

𝑑𝐴
− = 0  can be removed totally, then the above model remains a linear 

programming.  

3.2.  The compromise principle method 

As a kind of contrast, the compromise principle method [23] tends to give 

each instance or candidate the equal chance to reach the maximum overall 

evaluation. Suppose the instance set is 𝑋 = {𝑥𝑘, 𝑘 = 1, . . . , |𝑋|} , stance 𝑥𝑘:=
(𝑥1
𝑘 , … , 𝑥𝑛

𝑘) ∈ (−∞,∞)𝑛 and the maximum reachable overall evaluation of 𝑥𝑘  is 

denoted as max𝑥𝑘, then the compromise principle can be realized by the following 

MGLP model: 
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min𝑧 = ∑
|𝑋|
𝑘=1 𝑑𝑘

+ + 𝑑𝑘
−

𝑠. 𝑡. (

The boundary and monotonicity condition of capacity,
The explicit preference information,

𝐶(𝑥𝑘) − 𝑑𝑘
+ + 𝑑𝑘

− = max𝑥𝑘, 𝑑𝑘
+, 𝑑𝑘

− ≥ 0, 𝑘 = 1, . . . , |𝑋|,

       (3)  

where 𝑑𝑘
+, 𝑑𝑘

− are the positive and negative deviation variables. In fact, we can just 

set max 𝑥𝑘 as max(𝑥1
𝑘 , … , 𝑥𝑛

𝑘) for convenience. 

3.3  The MCCPI based minimum deviation method 

For each pair of items 𝑖, 𝑗 ∈ 𝑁 , if use 𝐼𝑖
𝑖𝑗

 to represent the relative 

importance of item 𝑖 with the comparison to item 𝑗, 𝐼𝑖𝑗
𝑃  the estimated value of the 

partial interaction between 𝑖 and 𝑗 without considering other items, we can have (
𝑛
2
) 

triple-element vectors (𝐼𝑖
𝑖𝑗
, 𝐼𝑗
𝑖𝑗
, 𝐼𝑖𝑗
𝑃), 𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗,  called the MCCPI for simplicity, 

where  

         0 ≤ 𝐼𝑖
𝑖𝑗
, 𝐼𝑗
𝑖𝑗
≤ 1, 𝐼𝑖

𝑖𝑗
+ 𝐼𝑗

𝑖𝑗
= 1, |𝐼𝑖𝑗

𝑃 | ≤ 2𝑚𝑖𝑛(𝐼𝑖
𝑖𝑗
, 𝐼𝑗
𝑖𝑗
)                               (4)   

The following equations bridge the MCCPI to the Shapley interaction 

index of the most desired capacity [22, 24]:  

𝐼𝑖
𝑖𝑗
=

𝐼𝜇({𝑖})

𝐼𝜇({𝑖})+𝐼𝜇({𝑗})
, 𝐼𝑖𝑗
𝑃 =

𝐼𝜇({𝑖,𝑗})

𝐼𝜇({𝑖})+𝐼𝜇({𝑗})
.                            (5) 

By introducing the absolute distance, we can realize the minimum 

deviation principle between the left and right hand sides of the above two equations 

by the following MGLP model:  
min  𝑧 = ∑𝑖,𝑗∈𝑁,𝑖<𝑗 𝑑𝑖𝑗

+ + 𝑑𝑖𝑗
− + 𝑒𝑖𝑗

+ + 𝑒𝑖𝑗
−

𝑠. 𝑡.

(

 
 

The boundary and monotonicity condition of capacity,

𝐼𝑖
𝑖𝑗
(𝐼𝜇({𝑖}) + 𝐼𝜇({𝑗})) − 𝐼𝜇(𝑖) − 𝑑𝑖𝑗

+ + 𝑑𝑖𝑗
− = 0, 𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗,

𝐼𝑖𝑗
𝑃(𝐼𝜇({𝑖}) + 𝐼𝜇({𝑗})) − 𝐼𝜇({𝑖, 𝑗}) − 𝑒𝑖𝑗

+ + 𝑒𝑖𝑗
− = 0, 𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗,

          (6) 

 where 𝑑𝑖𝑗
+ , 𝑑𝑖𝑗

− , 𝑒𝑖𝑗
+, 𝑒𝑖𝑗

− ≥ 0 are the positive and negative deviation variables. 

 

4. The PCA and preference information generation 

The PCA allows us to elicit some useful information from multiple inter-

correlated quantitative items or dimensions. It represents the original data into new 

inter-orthogonal variables, which are basically linear combinations of original 

items. According to the contribution rates to total variance, some of the new 

variables are selected as the principle components to realize the aim of dimension 

reduction [10]. 

Suppose there is a data set S= [𝑠𝑘𝑖]𝑚×𝑛  with 𝑚  instances and 𝑛  inter-

correlated items or dimensions. First, it is better to normalize each column of data 

S into the same scale, generally with standard deviation one and mean zero. Denote 

the normalized data as 𝑆 = [𝑠𝑘𝑖]𝑚×𝑛, 𝑠𝑘𝑖 is given by  
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𝑠𝑘𝑖 =
𝑠𝑘𝑖−𝑚𝑒𝑎𝑛(𝑠𝑖)

𝑠𝑑(𝑠𝑖)
, (7) 

 where 𝑠𝑖 is the 𝑖 column of the data S, 𝑚𝑒𝑎𝑛(𝑠𝑖) is the mean of 𝑠𝑖 and 𝑠𝑑(𝑠𝑖) is 

the standard deviation of 𝑠𝑖. Then, based on the covariance matrix of 𝑆, PCA can 

generate the 𝑛 orthogonal new variables:  

𝑉𝑖 = 𝑣𝑖1𝑠1 +⋯+ 𝑣𝑖𝑖𝑠𝑖 +⋯+ 𝑣𝑖𝑛𝑠𝑛, 𝑖 = 1, . . . , 𝑛,                 (8) 

 as well as their corresponding eigenvalues, denoted as 𝜆𝑖 , 𝑖 = 1, . . . , 𝑛, 𝜆1  > 𝜆2 

>⋯ > 𝜆𝑛 . 𝜆𝑖  shows the contribution of 𝑉𝑖  to the total variance and is used to 

determine whether 𝑉𝑖  can be a reserved principle components or not. Finally, 

suppose only 𝑛0 𝑛 new variables are chosen as the principle components, we can 

obtain some information about the importance and correlation among the original 

items or dimensions. 

Based on the result of PCA, the importance of items 𝑖, denoted as 𝑅𝐼𝑖, can 

be partially estimated by:  

                                   𝑃𝐼𝑖 = ∑
𝑛0
𝑙=1 𝜆𝑙|𝑣𝑙𝑖|                                                 (9)  

                                 

 and the comprehensive/overall importance of item 𝑖 can be estimated by:  

                                                   𝐶𝐼𝑖 =
∑
𝑛0
𝑙=1𝜆𝑙|𝑣𝑙𝑖|

∑𝑛𝑖=1 ∑
𝑛0
𝑙=1 𝜆𝑙|𝑣𝑙𝑖|

.                                               (10)  

                             

For the interaction between two original items 𝑖, 𝑗 , it can be partially 

estimated from the correlation coefficients of the scaled data 𝑆 as: 

                                              𝑃𝐶𝑖𝑗 =
𝑐𝑜𝑣(𝑠𝑖,𝑠𝑗)

𝑠𝑑(𝑠𝑖)𝑠𝑑(𝑠𝑗)
,                                           (11)   

 and their comprehensive correlation coefficient can be given as: 

                     𝐶𝐶𝑖𝑗 =
𝑐𝑜𝑣((𝑣𝑖1,...,𝑣𝑖𝑛0),(𝑣𝑗1,...,𝑣𝑗𝑛0))

𝑠𝑑(𝑣𝑖1,...,𝑣𝑖𝑛0)𝑠𝑑(𝑣𝑗1,...,𝑣𝑗𝑛0)
,                                   (12)  

where 𝑐𝑜𝑣() is the covariance function and 𝑠𝑑() is the standard deviation function, 

hence the correlation coefficients are basically the Pearson correlation coefficients. 

The partial/comprehensive importance and correlation coefficients, 𝑃𝐼𝑖 , 
𝐶𝐼𝑖, 𝑃𝐶𝑖𝑗 and 𝐶𝐶𝑖𝑗, are vital references to generate the input preference information 

of the capacity identification methods. 
Remark 2. The partial importance 𝑃𝐼𝑖 is not a normalized value, i,e., not 

always less than or equal to 1. If we want to reduce the initial items, we can use 
𝑃𝐼𝑖  or 𝐶𝐼𝑖  as an indicator to remain the given number items with the largest 
estimated importance. For the correlation coefficient, 𝑃𝐶𝑖𝑗 is obtained only by the 

involved two columns of data and taken as the partial correlation, meanwhile 𝐶𝐶𝑖𝑗 
is obtained by the coefficients of the orthogonal variables constituted by all the 
items, which are also used by most of the software packages for PCA [11], and 
hence can be taken as the comprehensive correlation coefficient.  
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4.1.  Transformation rules to comparison and interval preference 

The maximum entropy principle method as well as compromise principle 

method needs the comparison and interval forms of preference information as their 

input information. 

For the importance of items, we can first sort all the comprehensive 

importance 𝐶𝐼𝑖, 𝑖 = 1, . . . , 𝑛, in an descending order:  

                                  𝐶𝐼[1] > 𝐶𝐼[2] > ⋯ > 𝐶𝐼[𝑛],                                               (13)  

where [⋅] means a permutation on 𝑁, then transform it into a series of preference 

constraints of Shapley importance indices:  

                                    

𝐼𝜇({[1]}) − 𝐼𝜇({[2]}) ≥ 𝛿1,

𝐼𝜇({[2]}) − 𝐼𝜇({[3]}) ≥ 𝛿1,

    ⋯
𝐼𝜇({[𝑛 − 1]}) − 𝐼𝜇({[𝑛]}) ≥ 𝛿1,

                          (14) 

where 𝛿1 > 0 is the threshold. For the interactions of items, we can simply classify 

them into positive and negative ones as:  
                                𝐼𝜇({𝑖, 𝑗}) ∈ [𝛿2, 1]    if    𝐶𝐶𝑖𝑗 < 0,

𝐼𝜇({𝑖, 𝑗}) ∈ [−1,−𝛿2]   if    𝐶𝐶𝑖𝑗 > 0,                                   (15) 

 where 𝛿2 > 0 is the threshold. 
Remark 3. Empirically, we can set the threshold in Eq. (14) as 𝛿1 =

𝑚𝑖𝑛(0.05,1/(4𝑛)), which aims to give each index a reasonable feasible range. 
For Eq. (15), we can just set 𝛿2 = 0.05 to differentiate the index with zero. It also 
needs to point out that the Eq. (15) shows that the correlation coefficient is kind of 
opposite concept of interaction. Actually, it is reasonable that if two items are 
redundant/complementary (i.e., their interaction is negative/positive), then their 
correlation coefficient is likely to be positive/negative (i.e., the data of two items 
may highly be with similar/contrary trend).  

 Remark 4. It is infrequent to encounter that two comprehensive 
importance are equal. In that case, we can transform 𝑅𝐼[𝑖] = 𝑅𝐼[𝑗]  into two 

constraints: 𝑅𝐼[𝑖] − 𝑅𝐼[𝑗] ≤ 𝛿1  and 𝑅𝐼[𝑖] − 𝑅𝐼[𝑗] ≥ −𝛿1 . Furthermore, if the 

comprehensive correlation coefficient is equal to zero, we can transform 𝐶𝐶𝑖𝑗 = 0 

into two constraints: 𝐶𝐶𝑖𝑗 ≤ 𝛿2 and 𝐶𝐶𝑖𝑗 ≥ −𝛿2.  

The Eqs. (14) and (15) can be directly adopted in the maximum entropy 

and compromise principle methods as the hard constraints. One can see that, in Eq. 

(15), we only use the kind (positivity and negativity) of the correlation coefficients 

to get the relatively rough intervals of the interaction indices, mainly because many 

refined intervals mean many hard constraints and will dramatically increase the 

infeasibility chance of the model and then bring tremendous efforts on 

inconsistency recognition and adjustment. To avoid this situation, in the following 

two subsections, we give some MGLP based models and algorithms to more 

detailedly use the values of the partial and comprehensive correlation coefficients. 
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4.2.  Transformation rules to MCCPI information 

The MCCPI preference information, (𝐼𝑖
𝑖𝑗
, 𝐼𝑗
𝑖𝑗
, 𝐼𝑖𝑗
𝑃), 𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗, is obtained 

from the pairwise comparison and can be regarded as a sort of partial information. 

Hence, we can get their preference information from the partial importance and 

partial correlation coefficients as:  

                                         

𝐼𝑖
𝑖𝑗

=
𝑃𝐼𝑖

𝑃𝐼𝑖+𝑃𝐼𝑗
,

𝐼𝑗
𝑖𝑗

= 1 − 𝐼𝑖
𝑖𝑗
=

𝑃𝐼𝑗

𝑃𝐼𝑖+𝑃𝐼𝑗
,

𝐼𝑖𝑗
𝑃 = −𝑃𝐶𝑖𝑗 .

                                                    (16)  

 Then construct and solve the MCCPI model in Eq. (6), we can get a competent 

capacity. 

In order to observe more aggregation results to support a comprehensive 

and credible analysis or decision, we can adopt the idea of random generation 

MCCPI given in [24] and introduce two positive variables 𝛿3 and 𝛿4 to define the 

following allowable ranges:  

                                      

𝐼𝑖
𝑖𝑗

∈ [
𝑃𝐼𝑖

𝑃𝐼𝑖+𝑃𝐼𝑗
− 𝛿3,

𝑃𝐼𝑖

𝑃𝐼𝑖+𝑃𝐼𝑗
+ 𝛿3],                            

𝐼𝑖𝑗
𝑃 ∈ [−𝑃𝐶𝑖𝑗 − 𝛿4, −𝑃𝐶𝑖𝑗 + 𝛿4, ],

(17)  

 and 𝐼𝑗
𝑖𝑗
= 1 − 𝐼𝑖

𝑖𝑗
 accordingly, where two thresholds can be set as 𝛿3 = 0.05 and 

𝛿4 = 0.1 for example. The following algorithm 1 uses the random MCCPI in the 

allowable ranges to generate more desired capacities and the corresponding 

comprehensive aggregation results. 

 
Basically, in this subsection, we just transform the partial preference 

information into the goal constraints as well as the multiple goal objective function 

and use the MGLP based MCCPI method to obtain some competent capacities. In 

the next subsection, the comprehensive preference information is adopted to 

identify the desired capacities. 
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4.3.  Comprehensive importance and interaction oriented capacity   

        identification method 

 Actually, the comprehensive importance and correlation coefficients in 

Eqs. (10) and (12) can be taken as the references of Shapely importance and 

interaction indices of the items:  

                              
𝐼𝜇({𝑖}) = 𝐶𝐼𝑖, 𝑖 ∈ 𝑁,

𝐼𝜇({𝑖, 𝑗}) = −𝐶𝐶𝑖𝑗, 𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗.
                              (18)  

Then we can use the following MGLP to get a desired capacity:  
min𝑧 = ∑𝐴⊂𝑁,|𝐴|=1,2 𝑑𝐴

+ + 𝑑𝐴
−

𝑠. 𝑡. (

The boundary and monotonicity condition of capacity,

𝐼𝜇({𝑖}) − 𝐶𝐼𝑖 − 𝑑𝑖
+ + 𝑑𝑖

− = 0, 𝑖 ∈ 𝑁,

𝐼𝜇({𝑖, 𝑗}) + 𝐶𝐶𝑖𝑗 − 𝑑𝑖𝑗
+ + 𝑑𝑖𝑗

− = 0, 𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗,

                       (19) 

 where 𝑑.
+, 𝑑.

− are the positive and negative deviation variables. 

Similarly, we can also further introduce two positive variables 𝛿5 and 𝛿6 to 

get the following allowable ranges:  
𝐼𝜇({𝑖}) ∈ [𝐶𝐼𝑖 − 𝛿5, 𝐶𝐼𝑖 + 𝛿5], 𝑖 ∈ 𝑁,

𝐼𝜇({𝑖, 𝑗}) ∈ [−𝐶𝐶𝑖𝑗 − 𝛿6, −𝐶𝐶𝑖𝑗 + 𝛿6], 𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗.
                                (20)  

The algorithm 2 just uses the random comprehensive preference information in the 

above allowable ranges to generate the competent capacities. 

 
 

5. An illustrative application in ranking top 100 universities 

The QS World University Rankings comprehensively compare and rank 

the universities all over the world according to the following six criteria: (1) 

Academic Reputation, (2) Employer Reputation, (3) Faculty Student, 

(4)International Faculty, (5) International Students  and (6) Citations per Faculty. 

Its 2019 edition data is on website: https://www.topuniversities.com/ university-

rankings/world-university-rankings/2019. We only adopt the data of the first 100 

universities, ignoring the weights of the items applied in the QS ranking, to 
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demonstrate the aggregation method proposed by this paper. For simplicity, we 

only use the ranking order in stead of the university name. The first six lines of the 

data is listed in Table 1. We scale the data by using Eq. (7), some of the scaled 

data, 𝑆 = [𝑠𝑘𝑖]100×6, is shown in Table 2. 

 

 
5.1.   PCA and its generated basic data 

 By using Eq. (11), we have the partial correlation coefficients of all 

items/columns, 𝑃𝐶𝑖𝑗 , 𝑖, 𝑗 = 1, . . . ,6, see Table 3. Executing the PCA method, we 

have six new orthogonal variables 𝑉𝑖 = 𝑣𝑖1𝑠1 +⋯+ 𝑣𝑖6𝑠6, 𝑣𝑖𝑗, 𝑖, 𝑗 = 1, . . . ,6, and 

the corresponding eigenvalues, 𝜆𝑖, 𝑖 = 1, . . . ,6, shown in Table 4. From Eqs. (9), 

(10) and (12), we get the partial importance, 𝑃𝐼𝑖, comprehensive importance, 𝐶𝐼𝑖, 
and comprehensive correlation coefficients, 𝐶𝐶𝑖𝑗, 𝑖, 𝑗 = 1, . . . ,6, as shown in Table 

5. 

 

 

 
 

5.2.  Maximum entropy and compromise methods 

For the comprehensive importance in the last column of Table 5, we have 

𝐶𝐼4 > 𝐶𝐼5 > 𝐶𝐼1 > 𝐶𝐼2 > 𝐶𝐼6 > 𝐶𝐼3 , which can be transformed into the following 

preference constraints by according to Eq. (21):  
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𝐼𝜇({4}) − 𝐼𝜇({5}) ≥ 1/24,

                                                            𝐼𝜇({5}) − 𝐼𝜇({[1]}) ≥ 1/24,

    ⋯
𝐼𝜇({6}) − 𝐼𝜇({3}) ≥ 1/24,

                                       (21)           

where 1/24 = min(0.05,1/(4 × 6)) is basically the threshold 𝛿1. Since  
 𝐶𝐶12, 𝐶𝐶16, 𝐶𝐶24, 𝐶𝐶25, 𝐶𝐶26, 𝐶𝐶45, 𝐶𝐶46, 𝐶𝐶56 > 0, 

and  
 𝐶𝐶13, 𝐶𝐶14, 𝐶𝐶15, 𝐶𝐶23, 𝐶𝐶34, 𝐶𝐶35, 𝐶𝐶36 < 0, 

from Eq. (15), we have  
𝐼𝜇({1,2}), 𝐼𝜇({1,6}), 𝐼𝜇({2,4}), 𝐼𝜇({2,5}) ∈ [−1,−0.05],

𝐼𝜇({2,6}), 𝐼𝜇({4,5}), 𝐼𝜇({4,6}), 𝐼𝜇({5,6}) ∈ [−1,−0.05],

𝐼𝜇({1,3}), 𝐼𝜇({1,4}), 𝐼𝜇({1,5}), 𝐼𝜇({2,3}) ∈ [0.05,1],

𝐼𝜇({3,4}), 𝐼𝜇({3,5}), 𝐼𝜇({3,6}) ∈ [0.05,1].

          (22)  

Then according to maximum entropy principle model in Eq. (2), we have the 

following MGLP: 
min𝑧 = ∑𝐴⊂𝑁 𝑑𝐴

+ + 𝑑𝐴
−

𝑠. 𝑡. (

The boundary and monotonicity condition of capacity,
Eqs. (21)and(21)(22),

𝜇(𝐴) − 𝑑𝐴
+ + 𝑑𝐴

− =
|𝐴|

6
, 𝑑𝐴
+, 𝑑𝐴

− ≥ 0, ∀𝐴 ⊂ {1,2,3,4,5,6}.

                          (23)  

And according to compromise principle model in Eq. (3), we have 
min𝑧 = ∑100𝑘=1 𝑑𝑘

+ + 𝑑𝑘
−

𝑠. 𝑡. (

The boundary and monotonicity condition of capacity,
Eqs. (21)and(21)(22),

𝐶(𝑥𝑘) − 𝑑𝑘
+ + 𝑑𝑘

− = max𝑥𝑘 , 𝑑𝑘
+, 𝑑𝑘

− 0, 𝑘 = 1, . . . ,100,

                          (24) 

where 𝑥𝑘 is 𝑘-th row of the scaled QS ranking data, e.g., see the first row of Table 

2  𝑥3 = (1.0914406,1.0955824,1.0436139,0.6163684,0.2604047,1.3574329) 
and max𝑥3 = 1.3574329. Solving the above two models, we have the two optimal 

capacities, whose interaction indices are listed in Table 6. One can see that the 

maximum entropy principle tends to keep the same cardinality subsets with similar 

index value and by comparison the compromise principle leads to a bit variety on 

the index values. 
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5.3.  MCCPI method 

 From the partial importance listed in last second column in Table 5, the 

partial correlation coefficients listed in Table 3 and Eq. (16), we can have  

                                        

𝐼1
12 =

𝑃𝐼1

𝑃𝐼1+𝑃𝐼2
= 0.5108995,

    ⋯

𝐼5
56 =

𝑃𝐼5

𝑃𝐼5+𝑃𝐼6
= 0.5023214,

𝐼12
𝑃 = −𝑃𝐶12 = −0.638098883,
    ⋯
𝐼56
𝑃 = −𝑃𝐶56 = −0.009998829.

                                      (25)  

 From model 6, we have 
min  𝑧 = ∑𝑖,𝑗∈{1,2,3,4,5,6},𝑖<𝑗 𝑑𝑖𝑗

+ + 𝑑𝑖𝑗
− + 𝑒𝑖𝑗

+ + 𝑒𝑖𝑗
−

𝑠. 𝑡.

(

 
 
 
 
 
 

The boundary and monotonicity condition of capacity,

0.5108995(𝐼𝜇({1}) + 𝐼𝜇({2})) − 𝐼𝜇(1) − 𝑑12
+ + 𝑑12

− = 0,
    ⋯
0.5023214(𝐼𝜇({5}) + 𝐼𝜇({6})) − 𝐼𝜇(5) − 𝑑56

+ + 𝑑56
− = 0,

−0.638098883(𝐼𝜇({1}) + 𝐼𝜇({2})) − 𝐼𝜇({1,2}) − 𝑒12
+ + 𝑒12

− = 0,
    ⋯
−0.009998829(𝐼𝜇({5}) + 𝐼𝜇({6})) − 𝐼𝜇({5,6}) − 𝑒56

+ + 𝑒56
− = 0,

(26) 

where 𝑑𝑖𝑗
+ , 𝑑𝑖𝑗

− , 𝑒𝑖𝑗
+, 𝑒𝑖𝑗

− ≤ 0, 𝑖, 𝑗 ∈ {1,2,3,4,5,6}, 𝑖 < 𝑗 . Solving this MGLP, we get 

the optimal capacity and its Shapely interaction index, denoted as 𝐼1
𝑚. Furthermore, 

based on the Eq. (17), we set the 𝛿3 = 0.05, 𝛿4 = 0.1, execute Algorithm 1 with 

𝒦 = 10, and denote the optimal Shapley interaction indices as 𝐼2
𝑚 , ..., 𝐼11

𝑚 . The 

table 7 shows these indices of singletons and pairs items, where 𝐼1
𝑚 can be seen as 

the center surrounding by the random generation MCCPI generated indices, 

𝐼2
𝑚~𝐼11

𝑚 . All these indices allow us to see more overall aggregation results or 

different dominance situations among the instances.   

 
5.4.  Comprehensive information oriented method 

 In order to use the comprehensive importance and correlation coefficients 

generated by PCA to obtain some competent capacities, see Table 5, we can adopt 

Eq. (18) and the model in Eq. (19) to construct the following MGLP: 
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min𝑧 = ∑𝐴⊂{1,2,3,4,5,6},|𝐴|=1,2 𝑑𝐴
+ + 𝑑𝐴

−

𝑠. 𝑡.

(

 
 
 
 
 
 

The boundary and monotonicity condition of capacity,

𝐼𝜇({1}) − 0.1788513 − 𝑑1
+ + 𝑑1

− = 0, 𝑑1
+, 𝑑1

− = 0 ≥ 0,
    ⋯
𝐼𝜇({6}) − 0.1491402 − 𝑑2

+ + 𝑑2
− = 0, 𝑑2

+, 𝑑2
− = 0 ≥ 0,

𝐼𝜇({1,2}) + 0.582353302 − 𝑑12
+ + 𝑑12

− = 0, 𝑑12
+ , 𝑑12

− ≥ 0,
    ⋯
𝐼𝜇({5,6}) + 0.051670322 − 𝑑56

+ + 𝑑56
− = 0, 𝑑56

+ , 𝑑56
− ≥ 0.

                   (27)  

 Solving the above model, we achieve the optimal capacity and its Shapley 

interaction index, denoted as 𝐼1
𝑐. In order to observe more neighboring situations, 

we execute Algorithm 2 with 𝛿6 = 0.05, 𝛿4 = 0.1, and 𝒦 = 10, and denote the 

optimal Shapley interaction indices as 𝐼2
𝑚, ..., 𝐼11

𝑚 , see Table 8 which bears kind of 

likeness to Table 7. 

 
One may concern the final aggregation result where different capacities 

may more or less lead to different situations. Table 9 shows the ranking orders 

obtained by the four types of capacity identifications, in the title row, QS stands for 

the QS ranking order, R1 the maximum entropy method, R2 the compromise 

method, R3 the MCCPI method and R4 the comprehensive information oriented 

method. The ranking order of R3 is just the average of the 11 ranking orders 

achieved with their 11 capacities, so for R4. The difference between the QS 

ranking order and other four orders is that QS applies weights of 0.4, 0.1, 0.2, 0.05, 

0.05, 0.2 to the six items in sequence, where the other four orders adopt a relatively 

even weight, see the Shapley importance in Tables 6, 7 and 8. One can figure out 

that R1 and R2 bear good likeness meanwhile R3 and R4 have the relatively 

similar result. The similarity and difference of the aggregation results mainly lie in 

the applied principles in the capacity identification and the involved parameters 

also put some effects on the final outcomes. 
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 6. Conclusions 

In this paper, we combined the PCA method and capacity theory to 

construct some self-organized and unsupervised multiple criteria/items information 

aggregation models, where the PCA provides the importance and correlation 

information as the input preference information to guide the Choquet capacity and 

integral aggregation scheme.  

The maximum entropy principle tends to ensure the most even 

contributions of all the items and the compromise principle tries to provide the 

most equal chance for all the instance to reach their excellent performances. Both 

two principles have a trend to close the symmetric additive capacity. The MCCPI 

and the comprehensive information oriented methods aim to minimize the 

deviation between the competent capacities and the partial and comprehensive 

importance and interaction derived from the PCA. And the random generation and 

simulation algorithms can be applied for these two methods to explore the neighbor 

situation and provide a more comprehensive view of the aggregation outcomes.  

The combination of different aggregation methods is also good way to 

obtain more useful analysis supports and decision aids. It should be mentioned that 

in all the models proposed in this paper, additional explicit or implicit supervised 

preference, especially about the 3 or higher order subsets, as well as the 

inconsistency check and adjustment algorithms can be added and executed 

simultaneously.  

Future research will focus on some real applications of multiple criteria 

analyses, such as the classification results fusion and recommendation systems 

integration. And finally we want to emphasis that the complexity inherent in the 

structure of capacity actually provides many potential chances to store more 

knowledge and to collaborate with some artificial intelligence algorithms more 

flexibly. 
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