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SELF-ORGANIZED AND UNSUPERVISED INFORMATION
INTEGRATION METHOD BY COMBINING CAPACITY AND PCA

Abstract. The Choquet capacity and integral is a widely accepted model to
aggregate the multiple dimensional information mainly for its preeminent ability to
flexibly represent and efficiently deal with the interaction phenomenon among the
multiple correlative criteria/items. The PCA (Principal Component Analysis) is a
popular approach to obtain the successive importance of multiple criteria as well
as the correlations among them from the inter-correlated multiple dimensional
data. In this paper, we combine some unsupervised capacity identification methods
and PCA to constitute a self-organized information aggregation scheme, in which
the PCA is used to generate the partial or comprehensive importance and
correlations of the reduced (if necessary) multiple criteria, then adopting these
preference information as the input, the capacity identification methods transform
them into the competent capacities according to some rules and principles, and the
final comprehensive integrated information is carried out by the Choquet integral
accordingly. The main characteristic of this scheme is it only takes the raw
unscaled data on the multiple criteria as the input and many meaningful
aggregation analysis and decision aid results can be automatically output without
the analyst or decision maker’s supervision. The feasibility and practicability of the
proposed models are demonstrated by using the QS World University Rankings
data.
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1. Introduction

The Choquet capacity [4], also called fuzzy measure [1, 15], or nonadditive
measure [18], extends the probability measure by replacing the additivity with
respect to disjoint subsets by the monotonicity with respect to set inclusion, whose
explicit expression is the nonadditivity with respect to disjoint subsets. With the
monotonicity or nonadditivity property, the capacity becomes an excellent tool to
flexibly describe a variety of interaction situations of multiple dimensions, e.g., the
multiple decision criteria or evaluation items [19, 20]. The Choquet integral [4]
w.r.t. capacity has many good aggregation characteristics and is the most common
type of fuzzy or nonlinear integral to aggregate the correlated partial evaluation or
performance information on the reciprocally interacting criteria/items [9].

One of the major tasks of the Choquet capacity and integral information
integration scheme is to identify the competent capacity for representing the given
implicit or explicit preference information. The main capacity identification
methods can be classified into two categories.

The first category of capacity identification methods aim to fit the learning
set, which consist of a number of history aggregation instance’s partial evaluations
as well as their overall evaluation or ranking orders, usually regarded as implicit
preference information [23]. Their general idea is to find out the most suitable
capacity that leads to the least divergence between the obtained overall evaluations
and the desired ones given in the learn set by using some linear or nonlinear
optimization models [7]. For example, the least-squares principle [7], the least
absolute deviation criterion [3] and the maximum log-likelihood principle [5] try to
fit the desired overall evaluations of given instances; meanwhile the maximum split
approaches [14] try to fit the desired ranking order of given instances. This
category can be regarded as the typical supervised machine learning method [7].

In addition, some other supervising preference information about the
importance or interaction of the criteria/items can be further added into the capacity
identification models, like one criterion is more important than another one and
interaction of some criteria combination is strongly positive/negative [1]. This type
of information is usually called the explicit preference information [22], which can
be represented by the comparison and interval range forms of certain equivalent
representation, i.e., a linear one-to-one mapping in general, such as the Mdbius
representation, Shapley simultaneous interaction index[6], nonadditivity index [18,
20] and nonmodularity index [19].

The second category of capacity identification method only use the explicit
preference information to constitute the compatible constraints [21, 24] as well as
the objective function of the optimization model and without resorting to the
learning set. These methods mainly consist of the maximum entropy principle
method [12], the compromise principle method [23] and the MCCPI (multiple
criteria correlation preference information) based minimum deviation method [22].
The maximum entropy principle, or equally the principle of minimum distance
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with symmetric additive capacity [1], pursues the capacity with the maximum
entropy as the most desired one, which basically tries at most to ensure each
criterion/item plays the same effect on the overall evaluations. By contrast, the
compromise principle method manages to ensure the chance parity of all the
instances or candidates to obtain their maximum evaluations [23]. The MCCPI
method aims to find out the optimal capacities that have the minimum deviation
with the initial pairwise preference information.

Only with the input preference information of the multiple items and
partial evaluations of the instances, the second category of identification methods
can automatically generate the most satisfied capacity and then by using the
Choquet integral the final aggregation information or overall evaluation can be
obtained in sequence. More specially, the maximum entropy principle method only
needs the comparison and interval range forms of the preference information;
beside this type of information, the compromise method also needs the partial
evaluations of all instances; the MCCPI method needs a special pairwise
comparison of all criteria/items by the aid of a specific two dimensional diagram or
scale table. Traditionally, these input information is provided by the decision
maker or data analyst which is just kind of his/her subjective judgment on the
importance and interaction of these evaluation criteria/items.

However, in some situation especially for facing the rather new and very
complex problem, the decision maker or analyst can not provide high quality or
reliable input preference information since the lack of background knowledge or
the complexity and uncertainty inherent in the information aggregation problem.
Hence, the self-organized and unsupervised method to automatically integrate the
correlated information becomes very useful, at least it can provide certain aid
analyses on the matter or give some decision supports about the issue.

Fortunately, the PCA (principal component analysis) method is a wide
used tool to represent the inter correlated data into new orthogonal variables with
successively maximize variance [17], which is generally accepted as a good tool to
reduce dimensionality [10] and some useful information of the importance and
correlation of the initial items can be derived accordingly. And by adopting some
suitable transformation rules, these importance and correlation information
generated by PCA can be smoothly transformed into the required input preference
information for the second category capacity identification methods. In this paper,
we combine the PCA with the maximum entropy method, the compromise
principle method, the MCCPI method and a further proposed new type of capacity
identification method, to totally construct four types of self-organized and
unsupervised multiple dimensions information aggregation approaches.

This paper is organized as follows. After the introduction, we present some
knowledge about the capacity, Shapley simultaneous interaction index and the
Choquet integral in Section 2. In Sections 3 and 4, we briefly introduce the relative
capacity identification methods and PCA, respectively. Section 5 is devoted to
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combination schemes and rules of the PCA and capacity identification methods, a
new identification model is proposed as well. We demonstrate the steps and
applicability of the proposed unsupervised information aggregation method by
using the QS World University Rankings data 2019 edition and some empirical
comparison analyses are also given. Finally, we conclude the paper in Section 6.

2. Preliminaries

Let N = {1,2,...,n}, n > 2, be the set of criteria/items, P(N) be the power
set of N, and |S| be the cardinality of subset S © N.

Definition 1 [1, 4] A capacity on N is a set function u: P(N) — [0,1] with
(i) u(®) =0, u(N) = 1; (i) VA,B = N, A < B implies u(A) < u(B).

The quantity of u(A) represents the importance of this criteria coalition to
information aggregation problem. The monotonicity w.r.t. inclusion subsets also
enables the capacity transcend the probability measure whose main characteristic is
the additivity w.r.t. disjoint subsets to flexible represent the interaction or
dependency among multiple correlated criteria or items [1]. The interaction kind
and density is usually explicitly represented by certain interaction index, e.g., the
Shapley simultaneous interaction index given below.

Definition 2 [8] Let u be a capacity on N, the Shapley importance and

interaction index of u is defined as, for any AN,
1 N|—AN!

1,(A) = Xgcma m(l ||B|| l) (Zcea (—DClp(cu B)).

Generally speaking, 1, () is regarded as the overall importance of criterion
[ € N,and I,(A), |A| < 2, the comprehensive simultaneous interaction of subset A.
For the singletons and 2-order subsets, we have [6, 8]

Zien L,({i) =1, I,{i}) = 0, and I, ({i,j}) € [-1,1], i,j EN.

Remark 1. Actually, there are many other interaction indices, like
nonadditivity index [18], nonmodularity index [19] and bipartition interaction
indices [20]. Different types of indices have some different properties and practical
meanings for the aggregation process. For simplication, we only introduce the
Shapley interaction index.

The Choquet integral is a widely accepted form of fuzzy integral to
flexibly aggregate the partial evaluation information of instances or candidates on
multiple interdependent criteria/items.

Definition 3 [16] Let x be a real-valued function on N, x: = (x4, ..., x,,) €
(—o0,0)™, the Choquet integral of x with respect to a capacity u on N is defined
as
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n n

Cu(x) = Z [y — X-]uWNyy) = Z [u(N¢y) — (Ni+1) 12
i=1 i=1

where the parentheses used for indices represent a permutation on N such that
X(1) < - <Z Xy X(0) = 0, N(l) = {(l), e (n)}, and N(n+1) = Q.

3. The explicit preference information based capacity identification

methods

The most common type of the explicit preference information is the
comparison and range interval forms of the importance and interaction of
criteria/items [1, 7], like the overall importance of criterion i is at least as great as
that of criterion j: 1, ({i}) — 1,({j}) < 0; the sign of comprehensive interaction of
two criteria {i, j} is positive or negative: I, ({i,j}) € [§, 1]orl, ({i,j}) € [-1,-8],
6 >0; the comprehensive interaction of criteria subset A is larger than that of B
with threshold § > 0: 1,,(A) — 1,(B) = &. Usually the preference information are
linear constraints, if they are compatible reciprocally, a feasible range can be
constituted. Otherwise, some inconsistency recognition and adjustment methods
can be adopted to change them into the consistent case, see [21].

3.1. The maximum entropy principle method

The entropy of a capacity u on N is defined by [13]

E(W) = X1y Tacwy ot AR(A U (i) — u(A)), (1)

where h(x) = —xInx if x >0 and 0 if x =0. Since the symmetric additive
capacity has the largest entropy value In(n) [2, 23], we can alternatively calculate
the minimum distance with the symmetric additive capacity to realize the
maximum entropy principle, e.g., minimum variance principle [12]. If adopt the
absolute distance, we can get the following multiple goal linear programming
(MGLP) :
minz = Yoy df +d;
The boundary and monotonicity condition of capacity, @)
s.t The explicit preference information,
u(A) —di +dy = |Al/IN|,df,ds0,YAC N,

where dJ, d; are the positive and negative deviation variables holding the relation
d} xd; =0. Since the objective is minimum, the nonlinear constraints d; x
dy =0 can be removed totally, then the above model remains a linear
programming.

3.2. The compromise principle method

As a kind of contrast, the compromise principle method [23] tends to give
each instance or candidate the equal chance to reach the maximum overall
evaluation. Suppose the instance set is X = {x*,k =1,...,|X|}, stance x*:=
(xX, ..., xK) € (—o0,0)™ and the maximum reachable overall evaluation of x* is
denoted as maxx*, then the compromise principle can be realized by the following
MGLP model:
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minz = szll df +dj
The boundary and monotonicity condition of capacity,
The explicit preference information, 3)

C(x*) — dif + dy = maxx¥,dff,d; =0,k =1,...,|X],

where djf, dj; are the positive and negative deviation variables. In fact, we can just
set max x* as max(x¥, ..., xX) for convenience.
3.3 The MCCPI based minimum deviation method

For each pair of items i,j € N, if use Iiij to represent the relative
importance of item i with the comparison to item j, 15- the estimated value of the
partial interaction between i and j without considering other items, we can have (;‘)

J,17,15),1,j € N,i <, called the MCCPI for simplicity,

1

triple-element vectors (J;
where
o<1/, 17 <1, 17 +17 =1, |If)| < 2min(17, 17 (4)
The following equations bridge the MCCPI to the Shapley interaction
index of the most desired capacity [22, 24]:
o @ o _ (i) (5)
L LN+ OD Y L+ Y
By introducing the absolute distance, we can realize the minimum
deviation principle between the left and right hand sides of the above two equations
by the following MGLP model:

- — + —_ + —_—
min z = Zi,jEN,i<j dU + dU + €ij + €ij

The boundary and monotonicity condition of capacity,
ot ) + L) — 1,0 —dfy +d;; =0,i,j EN,i <}, 6)
IG5 + L,(UD) — L) — e +ejj = 0,i,j EN,i <},

where d}f, d;;, ef%, e;; = 0 are the positive and negative deviation variables.

4. The PCA and preference information generation

The PCA allows us to elicit some useful information from multiple inter-
correlated quantitative items or dimensions. It represents the original data into new
inter-orthogonal variables, which are basically linear combinations of original
items. According to the contribution rates to total variance, some of the new
variables are selected as the principle components to realize the aim of dimension
reduction [10].

Suppose there is a data set S=[sg;]mxn With m instances and n inter-
correlated items or dimensions. First, it is better to normalize each column of data
S into the same scale, generally with standard deviation one and mean zero. Denote

the normalized data as S = [Sk;ilmxn, Ski IS given by
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Sk = Ski_;;l?:;l(si), 7
where s; is the i column of the data S, mean(s;) is the mean of s; and sd(s;) is
the standard deviation of s;. Then, based on the covariance matrix of S, PCA can
generate the n orthogonal new variables:
Vi =vi1§1+-~-+vii§i+~-+vin§n,i= 1,...,7’1, (8)

as well as their corresponding eigenvalues, denoted as A;,i =1,...,n, 4; > 1,
>+ > A,. A; shows the contribution of V; to the total variance and is used to
determine whether V; can be a reserved principle components or not. Finally,
suppose only ngn new variables are chosen as the principle components, we can
obtain some information about the importance and correlation among the original
items or dimensions.

Based on the result of PCA, the importance of items i, denoted as RI;, can
be partially estimated by:

PI; = X° Alvyl (9)

and the comprehensive/overall importance of item i can be estimated by:
cl = 020, Al
' Ty 22 Aoyl

(10)

For the interaction between two original items i,j, it can be partially

estimated from the correlation coefficients of the scaled data S as:
__ cov(sysj)
PC; = sd()sdG;)
and their comprehensive correlation coefficient can be given as:
_ €ov((Vi1,Ving)(Vj1,Vjng))

CCij T sd@ig, Ving)SAWj1rYing)’ (12)
where cov() is the covariance function and sd() is the standard deviation function,
hence the correlation coefficients are basically the Pearson correlation coefficients.

The partial/comprehensive importance and correlation coefficients, PI;,
CI;, PC;j and CC;;, are vital references to generate the input preference information
of the capacity identification methods.

Remark 2. The partial importance PI; is not a normalized value, i,e., not
always less than or equal to 1. If we want to reduce the initial items, we can use
PI; or CI; as an indicator to remain the given number items with the largest
estimated importance. For the correlation coefficient, PC;; is obtained only by the
involved two columns of data and taken as the partial correlation, meanwhile CC;;
is obtained by the coefficients of the orthogonal variables constituted by all the
items, which are also used by most of the software packages for PCA [11], and
hence can be taken as the comprehensive correlation coefficient.

1)
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4.1. Transformation rules to comparison and interval preference

The maximum entropy principle method as well as compromise principle
method needs the comparison and interval forms of preference information as their
input information.

For the importance of items, we can first sort all the comprehensive
importance CI;, i = 1,...,n, in an descending order:

Clyy > Clpyy >+ > Cliy, (13)
where [-] means a permutation on N, then transform it into a series of preference
constraints of Shapley importance indices:

L1 - A2 = 64,

L,{21) - L, (B = 6,
(14)
L,({[n = 11D - L,{[n]D) = 65,

where 8, > 0 is the threshold. For the interactions of items, we can simply classify
them into positive and negative ones as:
I,({i,j}) € [62,1] if CC;; <0,

where §, > 0 is the threshold.

Remark 3. Empirically, we can set the threshold in Eq. (14) as §; =
min(0.05,1/(4n)), which aims to give each index a reasonable feasible range.
For Eq. (15), we can just set §, = 0.05 to differentiate the index with zero. It also
needs to point out that the Eq. (15) shows that the correlation coefficient is kind of
opposite concept of interaction. Actually, it is reasonable that if two items are
redundant/complementary (i.e., their interaction is negative/positive), then their
correlation coefficient is likely to be positive/negative (i.e., the data of two items
may highly be with similar/contrary trend).

Remark 4. It is infrequent to encounter that two comprehensive
importance are equal. In that case, we can transform RI;; = Rlj; into two
constraints: Rl — RIj; < 6, and Rl — RIjj) = —6, . Furthermore, if the
comprehensive correlation coefficient is equal to zero, we can transform CC;; = 0
into two constraints: CC;; < 6, and CC;; = —65,.

The Egs. (14) and (15) can be directly adopted in the maximum entropy
and compromise principle methods as the hard constraints. One can see that, in Eq.
(15), we only use the kind (positivity and negativity) of the correlation coefficients
to get the relatively rough intervals of the interaction indices, mainly because many
refined intervals mean many hard constraints and will dramatically increase the
infeasibility chance of the model and then bring tremendous efforts on
inconsistency recognition and adjustment. To avoid this situation, in the following
two subsections, we give some MGLP based models and algorithms to more
detailedly use the values of the partial and comprehensive correlation coefficients.
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4.2, Transformation rules to MCCPI information

The MCCPI preference information, (Iiij,lj.ij,lf}),i,j € N,i < j, is obtained
from the pairwise comparison and can be regarded as a sort of partial information.
Hence, we can get their preference information from the partial importance and

partial correlation coefficients as:

ij _  PL
I = )
PI+PI;
. s Pl
Io=1-1=—
J i PI;+PI;’ (16)
P _
I;j =-PC;.

Then construct and solve the MCCPI model in Eq. (6), we can get a competent
capacity.

In order to observe more aggregation results to support a comprehensive
and credible analysis or decision, we can adopt the idea of random generation
MCCPI given in [24] and introduce two positive variables §; and &, to define the
following allowable ranges:

Ill] c [ PI; _ 63, PI; + 6‘3 ,
PI+PIj PIi+PIj 17)
Ifj €[=PCyj—64,—PCyj+6,], (

and Ijij =1- Il.ij accordingly, where two thresholds can be set as §; = 0.05 and

6, = 0.1 for example. The following algorithm 1 uses the random MCCPI in the
allowable ranges to generate more desired capacities and the corresponding
comprehensive aggregation results.

Algorithm 1: Random MCCPI based information aggregation.
Initialize: the optimal capacities matrix U, v, where K is the amount of desired
capacities, the overall evaluations matrix Ex x|
for £k in1:K do
for each pair of items {i,j} C N do
| get a random point in their MCCPI’s allowable range (see (17)).
end
Solve model (6) with all the selected MCCPI and obtain thee optimal capacity,
1, and store it as kth row of U,
Calculate the Choquet integrals of all instances w.r.t. py, and store it as kth row

of E.
end

Qutput: the matrices U and E.

Basically, in this subsection, we just transform the partial preference
information into the goal constraints as well as the multiple goal objective function
and use the MGLP based MCCPI method to obtain some competent capacities. In
the next subsection, the comprehensive preference information is adopted to
identify the desired capacities.
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4.3. Comprehensive importance and interaction oriented capacity
identification method
Actually, the comprehensive importance and correlation coefficients in
Egs. (10) and (12) can be taken as the references of Shapely importance and
interaction indices of the items:

I#({i}) =CI;,i €N, (18)
I#({i,j}) = —CCl-j, i,JEN,i <j.
Then we can use the following MGLP to get a desired capacity:
minz = ZACN,|A|:1,2 dX +d;
The boundary and monotonicity condition of capacity, (19)

s.t. | L) —-CL—df +di =0,i€N,
L,{i,jp +CCy; — d{’j +d;;=0,i,jEN,i <],
where d*,d~ are the positive and negative deviation variables.
Similarly, we can also further introduce two positive variables 65 and &4 to
get the following allowable ranges:
L{i) €[Cl;—65Cl+65],i €N, (20)
L({i,j}) €[-CCij—86,—CCij + 8),i,j € N,i <.
The algorithm 2 just uses the random comprehensive preference information in the
above allowable ranges to generate the competent capacities.

Algorithm 2: Random comprehensive preference based information aggregation.
Initialize: the optimal capacities matrix Uy o, where K is the amount of desired
capacities, the overall evaluations matrix Ex .| x|
for k in 1: K do
for each item i of decision criteria {i,j} € N do
get a random point in its Shapley importance index’s allowable range (see

(20)).

end
for each pair of items {i,j} C N do
get a random point in their Shapley interaction index’s allowable range (see

(20)).

end

Construct and solve the MGLP accoridng to Eq. (19), denote its optimal capacity
as py, and store it as kth row of U,

Get the Choquet integrals of all instances w.r.t. p,, and store it as kth row of E.

end

Output: the matrices U and E

5. An illustrative application in ranking top 100 universities

The QS World University Rankings comprehensively compare and rank
the universities all over the world according to the following six criteria: (1)
Academic Reputation, (2) Employer Reputation, (3) Faculty Student,
(4)International Faculty, (5) International Students and (6) Citations per Faculty.
Its 2019 edition data is on website: https://www.topuniversities.com/ university-
rankings/world-university-rankings/2019. We only adopt the data of the first 100
universities, ignoring the weights of the items applied in the QS ranking, to
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demonstrate the aggregation method proposed by this paper. For simplicity, we
only use the ranking order in stead of the university name. The first six lines of the
data is listed in Table 1. We scale the data by using Eq. (7), some of the scaled

data, S = [Ski]100xe. iS Shown in Table 2.
Table 1: Head of QS 2019 university ranking

Rank Academic Reputation Employer Reputation  Faculty Student International Faculty International Students  Citations per Faculty
T T00.0 0.0 0.0 T00.0 95.5 99.8
2 100.0 0.0 0.0 99.8 70.5 99.0
3 100.0 0.0 99.3 92.1 75.7 99.8
4 98.7 81.2 0.0 96.8 90.3 100.0
5 100.0 0.0 0.0 99.6 98.8 83.0
G 100.0 0.0 0.0 99.4 97.9 77.2

Table 2: Some rows of scaled QS ranking data

Academic Reputation

Employer Reputation

LFaculty Student

International Faculty

International Students

Citations per Faculty

3 1.091440565 1.095582406 1.043613932 0.616368388 0.260404733 32899

5 1.091440565 1.069509142 0.867T988403 1.058619878 08088
16 1.073787331 1.0¢ 9142 -1.118132246 565721
21 E -1.106105555 1.069509142 0.207066497 0.509226669
34 0.208778905 -0.278556948 1.062110511 -0.46178992: -0.001428102
46 -0.173707815 0.022834212 -0.939219245 1.100085600 1.167019 ]
70 -0.650345111 -0.968180787 -0.384321901 0.98¢ -0.486117377
79 -1.050485063 0.3242 -0.646973311 -0.862617081
83 -2.515703419 -1.499446560 1.062110511 -0.910126: 1348777734
94 -0.844530676 0.268033799 -0.783847989 0.3647T48373 0.464277865 -1.156892712

5.1. PCA and its generated basic data

By using Eg. (11), we have the partial correlation coefficients of all
items/columns, PC;j, i,j = 1,...,6, see Table 3. Executing the PCA method, we
have six new orthogonal variables V; = v;;5; + -+ + v;65¢, 35, 1,j = 1,...,6, and
the corresponding eigenvalues, 4;,i = 1,...,6, shown in Table 4. From Eqgs. (9),
(10) and (12), we get the partial importance, PI;, comprehensive importance, CI;,
and comprehensive correlation coefficients, CCyj, i,j = 1,...,6, as shown in Table

5.

Table 3. Partial correlation coefficients of six items

Academic Reputation

Employer Reputation

Faculty Student

International Faculty

International Students

Citations per Faculty

Academic Reputation 1 0.638093883 0.033301470 -0.008442227 0.114413368 0.107028200
Employer Reputation 0.638098883 1 0.094292559 0.178510026 0.261781288 -0.020298971
Faculty Student ).033301470 0.094292559 1 -0.071973643 -0.063081537 -0.261466578
International Faculty -0.008442227 0.178510026 -0.071973643 1 0.669626119 0.177230965
International Students ) 0.261781288 -0.063081537 526119 1 0.009998829
Citations per Faculty ) -0.020298971 -0.261466578 230965 0.009998829 1
Table 4: Coeflicients of new orthonogonal variables and their eigenvalue
Ttems Vi Vi Vi Vi s Vo
Academic Reputation 0.579011568 0.623070958 -0.360104110 ~-0.030728311 0.3074143796 -0.223T715857
Employer Reputation 0.712207757 30531 0. 087385473 -0.003531743 ~0.370647991 0.179819560
Taculty Stucdent -0.068606417 32 325 0.605759311 0. 53324906 0.045570206 0.022066242
International Faculty TO1338267 529316510 0.27049 9 0.133131982 -0.179312649
International Students -0.365521491 0.353186259 -0.107125941 0.282542163 5;
Clitations per Faculty -0.357301225 0. 707614168 0.560794304 0.000673998 0.121541380

275406535

BEigenvalues A\; 1.470948908 1.203096737 0. 745665649 0.345961821

Table 5: Comprehensive correlation coefficients and partial, comprehensive importance

Faculty Student_Iiternational Faculty _Infernational Students _Citations per Faculty Partial importance _Comprehensive importance

Acadeniic Reputation_Emplayer Repitation

Academic Reputation 0.582353302 -0.334808558 -0.020696363 -0. 03 0143601928 7683 0.178851286
Employer Reputation 0.582353302 1 -0.242432118 0.180225465 0.006404549 T8
Faculty Student -0.242432118 -0.129802030 -0.206385353 46400
International Faculty -0.020696863 1 0.750530051 0.179901256 01824
International Students -0.078293903 0.103292379 0.750530051 1 0.05] 1322 3184476
Citations per Faculty 0.143601928 0006404549 0.179901256 0.051670322 1 2231923994

5.2. Maximum entropy and compromise methods

For the comprehensive importance in the last column of Table 5, we have
Cly > Cls > CI, > CI, > Clg > CI; , which can be transformed into the following
preference constraints by according to Eq. (21):
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L({4) - 1,({5) = 1/24,

L5 - 1,1 = 1/24,
n K (21)

L,({6h - 1,({3) = 1/24,

where 1/24 = min(0.05,1/(4 X 6)) is basically the threshold §;. Since
CCiz,CC1g,CCo4, CCys,CCor6,CCus, CChe,CCs6 > 0,
and
CCy3,CCy4,CCys,CCps3, CCay, CC35,CC36 < 0,
from Eq. (15), we have
L{1,2), L,({1,6)), 1, ({24}, 1,({2,5}) € [-1,-0.05],
L,(£2,6)),1,({4,5), I, ({4.6)), ,({5,6}) € [-1,—-0.05],
L({1,3), L,({1,4), [, (1.5, [,({2,3})  €[0.051],
L,({341),1,({3,51), 1,({3,6}) € [0.05,1].
Then according to maximum entropy principle model in Eq. (2), we have the
following MGLP:
minz = Y ey df +d;
The boundary and monotonicity condition of capacity,
Egs. (21)and(21)(22), (23)
u(A) - df +dy =2, d},dy 2 0,v4 © (1,2,3,456).
And according to compromise principle model in Eg. (3), we have
minz = Y}%9 df +dj
The boundary and monotonicity condition of capacity,
Egs. (21)and(21)(22), (24)
C(x*) — d}f + dy = maxx¥,df,d;0,k =1,...,100,

(22)

s.t.

where x* is k-th row of the scaled QS ranking data, e.g., see the first row of Table
2 x3=(1.0914406,1.0955824,1.0436139,0.6163684,0.2604047,1.3574329)
and maxx3 = 1.3574329. Solving the above two models, we have the two optimal
capacities, whose interaction indices are listed in Table 6. One can see that the
maximum entropy principle tends to keep the same cardinality subsets with similar
index value and by comparison the compromise principle leads to a bit variety on
the index values.

Table 6: The interaction indices obtained by maximum entropy and compromise methods

A Max Entropy _Compromise A Max Entropy _Compromise A Max Entropy _Comproniise A Max Entropy _Comprontise
0 0.5121 05735 {4,5) 20.0500 01756 41,2.6) 0.0780 0.1335 {1.2,4,6} 01098 02175
1 0.1875 0.1875 1,6 -0.0500 -0.0500 1,3,6 0.0050 -0.0289 1,3,4,6 0.1219 0.0881
{1} {L.6} { } { i
2 0.1458 0.1458 2,6 -0.0500 -0.0786 2,3,€ 0.0422 0.0230 2,3,4,6 0.0255 -0.0674
{2} {2,6} { } { }
{3} 0.0625 00625 {3,6) 0.0500 0.0500  {1,4,6} 0.1170 0.0326 11,2,5,6} -0.0078 -0.2646
4 0.2708 0.2708 4,6 -0.0500 -0.0953 2,4,6 0.0631 0.0391 1,3,5,6 0.1284 0.0881
{4} {4.6} { } { }
{5} 0.2292 02292 {5,6} -0.0500 201322 {3,4,6} 0.0314 -0.0398 {2.3,5,6} -0.0255 -0.0674
{6} 0.1042 01042 {1,2,3} 0.0174 00330 {1,5,6} 0.0772 0.0984 {1,4,5,6} -0.0646 0.0197
{1,2} -0.0500 -0.0500 {1,2,4} 0.1596 0.1893  {2,5,6} 0.0845 0.0627 {2,4,5,6} -0.0412 -0.0716
{1.3} 0.0500 0.0500 {1,3,4} 0.1031 0.1164  {3,5,6} 0.0305 -0.0398 13,4,5,6} -0.0317 0.1144
{2.3} 0.0500 00500 {2,3,4} 0.0637 0.0483  {4,5,6} 0.1568 0.2344  {1,2,3,4,5} 0.3181 0.0848
{1.4} 0.0500 0.0500 {1,2,5} 0.1269 0.0654 {1,2,3,4} 0.1027 01231 {1,2,3,4,6} 0.1128 0.0678
{2,4} -0.0500 -0.1080 {1,3,5} 0.1245 0.1164 {1,2,3,5} 0.1472 01231 {1,2,3,5,6} 0.1371 0.0678
3.4} 0.0500 0.0500 {2,3,5) 0.0431 0.0483  {1,2,4,5} -0.0041 01598 {1,2,4,5,6} 0.6593 0.3156
{1,5} 0.0500 00500 {1,4,5} 0.1713 0.0461 {1.3,4,5} 0.1411 0.0388  {1,3,4,5,6} 0.0476 -0.1008
{2,5} -0.0500 -0.0500 {2,4,5} 0.1553 02180 {2.3,4,5} 0.1406 0.0968  {2.3,4,5,6} 0.0733 0.0153
{3,5} 0.0500 00500 {3,4,5} 0.0518 0.1251 {1,2,3,6} 0.1412 20.1068 {1,2,3,4,5,6} 0.2505 -0.2809
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5.3. MCCPI method
From the partial importance listed in last second column in Table 5, the
partial correlation coefficients listed in Table 3 and Eq. (16), we can have

Ply

Iz = = 0.5108995,
Pl +PI,
56 Pls _
I2° = PPl 0.5023214, (25)

If, =-PCy,=—0.638098883,

15, = —PCgs = —0.009998829.
From model 6, we have
min z = ¥; je(123456),i<j dij +di; + e +ej;
The boundary and monotonicity condition of capacity,
(0.5108995(1#({1}) +1,({2)) - L,(1) —df; + di; = 0,

s | 0.5023214(I, ({5} + 1,({6})) — 1,(5) — ddc + d5c = O, (26)
' | —0.638098883 (1, ({1}) + I,({2}) — 1,({1.2}) —ef, + e = 0,
\—0.009998829(1ﬂ({5}) +1,({61) — 1,({5,6)) — eds + €55 = 0,
where d{fj,di‘j,e{;-,ei} <0,i,j€{1,234,5,6},i <j. Solving this MGLP, we get
the optimal capacity and its Shapely interaction index, denoted as I7". Furthermore,
based on the Eq. (17), we set the §; = 0.05, §, = 0.1, execute Algorithm 1 with
K =10, and denote the optimal Shapley interaction indices as I3, ..., I]}. The
table 7 shows these indices of singletons and pairs items, where 17" can be seen as
the center surrounding by the random generation MCCPI generated indices,
I*~I17% . All these indices allow us to see more overall aggregation results or
different dominance situations among the instances.

Table 7: The interaction indices obtained by MCCPI methods
7

77 g 7 T T 7T i g 77T
1] 0.6126 0.6077 0.G023 0.G307 0.6146 0.6096 0.6203 0.6200 0.6031
{1} 3 0.1671 0.1880 0.1947 0.1628 0.1623 0.1852 0.1964 0.1839
{2} 0.1784 0.1675 0.1628 0.1787 0.1707 0.1845 0.1693 0.1826
{3} 0.1361 0.1421 0.1373 0.1369 0.1250 0.1420 0.1359 0. 1344
{4} 0.1685 0.1654 0.1871 0.1590 0.2038 0.1690 01793 0.1762
{5} 0.1806 0.1889 0.1861 0.1674 0.1881 0.1961 0.1713 01788 0.1622
{6} 0.1491 0.1610 01509 0. 1507 0. 1446 0.1421 01480 0. 1403 01526 01607
.2 -0.2234 -0.2527 -0.239¢ -0.232 -0.2508 -0.1825 -0.270 -0.2205 =0.2647 =0.2207
1.2 223 2527 2303 2324 2 H0S 1825 2707 2205 2GAT 2207
{1.3} -0.0105 0.0106 -0.0409 -0.0103 -(0.0120 -0.0135 -0.0315 -0.0104 0.0014 -0L0366 -0.0396
2,18 -0.02¢ -0.0530 -0.0376 -0.0232 -0.0156 -0.017% -0.0545 -0.0178 -0.0029 =-0.0 8] -0 3
2.3 201 53 37 232 15 171 545 TE 2 11 3
.4 0.0030 Y 0.0195 0. 00 -0.0136 0.0365 -0.0222 0.017s =0.029. 0.0037
1 3 5 11 15 365 222 TE 204 37
2,4 =0.06s -0.0862 -0.0797 =0.043¢ - -0.10 -0.0730 -0.0285 -0.0646 -0.0862
2 31 SG2 TOT 139 1011 T3 235 H 262
3.4 0.0230 0.0246 0.0329 0.0102 0.0196 0.0112 0.012 0.0174
3 23 24 32 102 112 124 17
LD =004 -0.067¢ -0.0770 -0.0651 -0.02 -0.0355 -0.0599 -0.0325 ~0.0417
1.5 11 T9 T 5 247 355 5 325 17
2 -0.092 -0.121: =00 T0AL -0.1016 -0.0830 -0.1278 -0.0910 =0.058:0 -0.1202
121 1213 13 1 233 278 ] 583 1202
3.5 0.020 0.0 1 0.0098 -0.0046 0.0348 0.011 0.0119 0.0010 0.0096
3 201 31 ] 1 348 1 1 1 2]
1.5 -0.2430 -0.2187 -0.2229 -0.2678 =0.2430 -0.2498 -0.230¢ -0.2562 =0.2548 -0.1980
5 243 2187 222 26T 243 2408 2303 2562 254 195
{1.6} -0.0351 -0.0581 -0.0628 -0.06G30 ~0.0486 -0.0502 -0.0130 -0.0530 ~0.0352 -0.0549
{2.6} 0.0065 0.0347 0.0170  -0.0133 0.0035 0.0288 0.0039 0.0101 0.0243 -0.02606
{3.6} 0.0750 ;2 0.0675 0.0699 0.0742 0.0816 0.0538 0.0483 0.0729 0. 1044
{4.6} -0LO5B8T -0.0515 -0.0515 -0.0831 -0L0288 -0.0616 -0.0741 -0.0418 ~(L0530 -0.06G12
{5.6} -0.0033 -0.0107 -0.0254 ~0.0061 0.0014 -0.0118 -0.0315 -0.0258 00174 O 0042

5.4. Comprehensive information oriented method

In order to use the comprehensive importance and correlation coefficients
generated by PCA to obtain some competent capacities, see Table 5, we can adopt
Eqg. (18) and the model in Eq. (19) to construct the following MGLP:
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minz = Yacq23456)41=12 @4 + di
The boundary and monotonicity condition of capacity,
(IH({l}) —0.1788513 —df +dy =0,d},di =0=0,

1,({6}) — 0.1491402 — df +d; = 0,df,d; = 0> 0, (27)
1,({1,2}) + 0.582353302 — df, + d, = 0,d},, dp, = 0,

1,({5,6]) + 0.051670322 — d; + d5s = 0,d, d5g = 0.
Solving the above ‘model, we achieve the optimal capacity and its Shapley
interaction index, denoted as I{. In order to observe more neighboring situations,
we execute Algorithm 2 with 64 = 0.05, §, = 0.1, and K = 10, and denote the
optimal Shapley interaction indices as 13", ..., I]], see Table 8 which bears kind of
likeness to Table 7.

Table 8: The interaction indices obtained by comprehensive information oriented methods
T; F55 IE; I Iz IE Iz IS 15 1o Iy

05670 05716 [EREENIT) 05717 0.5420 [N EE] 05269 O.GZ10 0.5396 0. I=01 05725

[4]

{1} 0.1789 0.1562 0.2107 0.2121 0.1378 0.2060 0.1499 0.1990 0.1730
{2} 0.1844 0.1361 0.2188 0.1605 02059 01836 01509 0.1834
{3} 0.1582 0.1823 0.1342 0.2313 0.1606 01016 0.1434 0.1332
{4} 0.2230 0.1474 0.1415 0.1467 01769 0.2248 01504 0.2120
{5} 0.1431 0.1931 0.1457 0.2168 0.1379 0.1826 01648 0.1121
{G} 0.1350 0.1304 0.1478 0.1070 01127 01574 01915 0.1814
.2} -0.2232 -0.1894 -0.1566  -0.3712 -0.3075  -0.3401 01317 -0.2590  -0.1314 -0.2831

3} 0.1043 0. 1150 0.1651 0.0456 0.1169 00707 00825 0.0629 0.1423 0.0607

00675 0.0791 0.0282 0.0625 0.0672 00481
-0.0021 00329 0.0139 0.0929 0.11638 0.0377

2, 3% 0.0311 00,0544 0.0502 0.0611
.4} 0.0207 00416 0.0969 -0.0092

.4} ~0.1802 -0.2230 ~0.0802 ~0.0976G ~0.0909 ~0.1400 ~-0.2023 01586 -0.1973
L4} O.0GGO 0.1061 0.0721 0.0611 i 0.0958 01017 00515 00726 0.0612
00783 01107 0.1229 0.0707 OT6ET 0.1072 0.0828 00173 0.0033 0.1149
-0.1033 - 0.0600 -0.1785 -0.1326  -0.1433 -0.0165 -0.0796 -0.1938 00812 -0.0057

T

+

T 0.0945 0.0973 0.1365 0.0963 0.1248 0.1701 00689 003046 0.0742 0.0985 00636
.5} -0.2173 -0 1500 -0.1647  -0.1531 -0.2115 -0.2612 -(0.3202 -0.2345 -0.2674 -0.1999
.G} ~0.1436 -0.0557 -0 1098 -0.2341 ~0. 1199 -0.2079 01585 -0.2190 ~0.0662 -0.1974

b

s

T

T

00064 -0, 1054 0.0324 0.0740 0.0171 00787 =0 08990 0L08TSH 0.0170 -0.0082
QL0706 0.0333 0.0823 0.0741 0.0772 0.1022 00701 006G 0.106G4 0.0672 0.0862
-0.1799 -0.2605 ~0.1810 ~0L 1689 —0.2111 ~0. 1008 ~0.0984 ~0.1428 01212 ~(.13041 ~0L1760
~0.0517 -0.0010 ~0.0665 ~0.0967  -0.0099 -0.0829 ~-0.0640 0.0278 -0.1339 ~0.0997 ~0L 1144

i i o i o i b iy i i i i
GEWN—EUN RS RN RN

One may concern the final aggregation result where different capacities
may more or less lead to different situations. Table 9 shows the ranking orders
obtained by the four types of capacity identifications, in the title row, QS stands for
the QS ranking order, R1 the maximum entropy method, R2 the compromise
method, R3 the MCCPI method and R4 the comprehensive information oriented
method. The ranking order of R3 is just the average of the 11 ranking orders
achieved with their 11 capacities, so for R4. The difference between the QS
ranking order and other four orders is that QS applies weights of 0.4, 0.1, 0.2, 0.05,
0.05, 0.2 to the six items in sequence, where the other four orders adopt a relatively
even weight, see the Shapley importance in Tables 6, 7 and 8. One can figure out
that R1 and R2 bear good likeness meanwhile R3 and R4 have the relatively
similar result. The similarity and difference of the aggregation results mainly lie in
the applied principles in the capacity identification and the involved parameters
also put some effects on the final outcomes.
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Table 9: The final ranks of four types of methods

=] 11 132 113 131 = T 32 I3 131 Q5 131 2 3 -1 QS 31 132 33 131
1 T 1 T T 206 852 =20 52 13 5T 13 16 18] i 70 53 50 GO 55
2 9 9 2 1 27 29 27 25 100 52 31 36 1 39 7T 100 a9 a9 299
3 = 7 1 B 28 17 17 25 15 53 T = TV TG TE 65 65 T Tl
<1 7 = 5 5 29 14 13 17 15 544 25 23 31 34 T a4 51 63 58
5 2 2 3 2 30 39 39 39 26 55 52 54 a8 T3 20 20 TT 84 73
(& 3 1 (5] (&3 31 16 14 23 16 506G G3 53 Gl 65 21 T4 T2 8|2 29
7 -1 6 7 9 32 45 31 16 42 57 67 (5153 66 54 82 57 57 65 GO
= 5] 3 =] 3 33 15 19 20 21 o8 D0 a1 859 91 83 DG B8 93 a0
kel 22 21 13 14 34 5= 65 a7 51 59 a2 45 15 [Shrg B4 299 100 o8 100

10 G 5 9 7 35 =5 26 T3 82 (18] 71 T1 19 52 =5 54 58 68 75
11 1O 11 10 11 36 84 82 GO B4 61 51 47 59 36 =6 25 06 92 BE
12 12 15 12 13 37 26 26 a6 31 62 T2 T8 T8 63 87 T8 =24 G 06
13 19 16 18 17 38 23 24 21 32 63 a5 51 |87 87 88 80 o2 a5 o3
14 15 1= 15 19 39 27 32 27 44 [=E |7 a3 a0 B2 =0 75 23 B8 7=
15 24 25 22 21 <40y =1 73 T 70 65 59 62 33 16 Q0 92 20 a1 05
16 37 29 20 23 11 S50 52 51 38 (151 73 T5 B5 75 91 19 55 T2 =0
17 55 15 32 35 12 28 33 30 53 67 a7 95 aT a8 92 61 G 81 62
18 11 10 14 12 13 GO 19 54 56 68 G2 G3 08 17 a3 TG T 75 GS
19 35 11 12 29 {5 10 13 a5 33 (3] 7O G7T 20 GG 94 56 Gl 71 61

20 36 37 29 2= 45 33 10 34 59 TO “141 35 55 15 a5 23 04 26 92

21 100 11 28 25 A6 32 34 37 a1 71 =23 TG TG B3 26 (3] 7O 67 7T

22 21 20 11 22 17 as 12 15 18 T2 941 a5 94 94 a7 G5 oo 5 806

23 7T T4 50 Gl 18 34 35 13 57 T3 GG 59 74 19 98 as 07 1O o7

24 20 22 19 30 19 30 30 11 24 T4 47T GO 17T S50 D9 a1 825 62 85

25 13 12 106 10 50 <11 25 10 27 T 20 =1 856 7O 100 Gl 506 853 G

6. Conclusions

In this paper, we combined the PCA method and capacity theory to
construct some self-organized and unsupervised multiple criteria/items information
aggregation models, where the PCA provides the importance and correlation
information as the input preference information to guide the Choquet capacity and
integral aggregation scheme.

The maximum entropy principle tends to ensure the most even
contributions of all the items and the compromise principle tries to provide the
most equal chance for all the instance to reach their excellent performances. Both
two principles have a trend to close the symmetric additive capacity. The MCCPI
and the comprehensive information oriented methods aim to minimize the
deviation between the competent capacities and the partial and comprehensive
importance and interaction derived from the PCA. And the random generation and
simulation algorithms can be applied for these two methods to explore the neighbor
situation and provide a more comprehensive view of the aggregation outcomes.

The combination of different aggregation methods is also good way to
obtain more useful analysis supports and decision aids. It should be mentioned that
in all the models proposed in this paper, additional explicit or implicit supervised
preference, especially about the 3 or higher order subsets, as well as the
inconsistency check and adjustment algorithms can be added and executed
simultaneously.

Future research will focus on some real applications of multiple criteria
analyses, such as the classification results fusion and recommendation systems
integration. And finally we want to emphasis that the complexity inherent in the
structure of capacity actually provides many potential chances to store more
knowledge and to collaborate with some artificial intelligence algorithms more
flexibly.
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